1. [14 Points] Bidding Languages

(a) [3 Points] Prove that the OR language is expressive for superadditive valuations and only superadditive valuations.

(b) [2 Points] The XOR-of-OR language allows a bidder to submit a bid such as \((AB, 4) \lor (CD, 6) \oplus (EF, 10) \lor (FG, 12) \). How would this bid be represented in the OR* language?

(c) [4 Points] How many dummy items are needed to represent a general XOR-of-OR bid as an OR* bid? Assume \(k \) OR clauses, each with \(\ell \) atoms.

(d) [1 Points] Is the XOR-of-OR language fully expressive? Why or why not?

(e) [2 Points] Give an informal argument for why OR* bids “look just like” OR bids from the perspective of winner determination once dummy items are introduced into the supply.

(f) [extra credit] A bidder with the majority valuation function values any package of size at least \(m/2 \) items at \$1, and any smaller package at \$0. Show that the majority valuation function requires \(\binom{m}{m/2} \) atomic bids to represent in the OR* language. [Hint: it is helpful to argue that you do not need atoms smaller than \(m/2 \).]

2. [18 Points] Winner determination

(a) [3 Points] Consider two bidders and three items, and XOR bids “\((A, 1) \oplus (BC, 2) \)” from bidder 1 and “\((AB, 2) \oplus (C, 3) \)” from bidder 2. Cyclic structure (Section 11.3.3) only applies to bids in the OR or OR* language (treating dummy items as items for the purpose of the structure). Explain why these bids cannot satisfy the cyclic structure property (Section 11.3.3) when expressed in the OR* language.

(b) [2 Points] Use one of the properties S1–S4 to explain why the winner determination problem for XS (XOR-of-Singletons) is tractable.
Dynamic programming can be used to solve winner determination with OR bids. Let \(W(S) \) denote the value of the optimal allocation that only allocates items in set \(S \subseteq G \). Dynamic programming computes \(W(S) \) for all \(|S| = 1 \), then \(W(S) \) for all \(|S| = 2 \), size 3, and so forth.

(c) [3 Points] For some set \(S \subseteq G \), provide an expression for \(W(S) \) as a function of atomic bids on package \(S \) and \(W(S') \) for sets \(S' \subset S \).

(d) [4 Points] Walk through the steps of dynamic programming on the winner determination problem in Figure 11.1 (assuming truthful bids). What record-keeping allows the optimal solution to be determined at the end of the algorithm?

(e) [3 Points] Why is the run-time of dynamic programming \(O(n2^m + 2^m) \) for \(n \) bidders and \(m \) items? When is this polynomial in the size of the input?

(f) [3 Points] What is the problem with the OR language? What goes wrong with this dynamic programming scheme if the bidding language is XOR rather than OR (give a simple example)? What bidding language can be adopted in place of OR that is both general and can be combined with this dynamic programming scheme?

3. [13 Points] VCG auction, Core-selecting auctions

(a) [3 Points] Prove that if (11.21) is violated for some set \(L \), there is an allocation to the bidders in \(L \) where the value created could be divided between the seller and bidders in \(L \) to make them all strictly better off.

(b) [2 Points] Use (11.22) to confirm, by setting payments equal to value (and thus, bidders’ payoffs to zero), that the core of the CA is always non-empty.

Consider an instance with four goods \(\{A, B, C, D\} \), and three bidders, with single-minded valuations \((A, 10), (ABCD, 19), (B, 8)\) respectively.

(c) [3 Points] What is the outcome of the VCG mechanism (with truthful bidding)? How can the losers collude and win and pay zero?

(d) [3 Points] A core outcome of an auction has the following properties, all defined with respect to reported valuations:

- outcome \(X \) is efficient
- no allocated bidder pays more than its value
- unallocated bidders pay zero
- Eq. (11.24) holds for all subsets of allocated bidders (including the set of all allocated bidders)

A core outcome is bidder-optimal if, in addition, the outcome satisfies the property of Defn. 11.8. Assuming truthful bidding, describe the bidder-optimal core outcome or set of bidder-optimal core outcomes on this input. Is the VCG outcome in the core?

(e) [2 Points] Now consider the deviation in which the losing bidders collude as in part (c). Describe the bidder-optimal core outcome or set of bidder-optimal core outcomes on this input. What do you notice?